ICLR 2025

TIS-DPO: Token-level Importance Sampling for Direct Preference Optimization With Estimated Weights

Aiwei Liu, Haoping Bai, Zhiyun Lu, Yanchao Sun, Xiang Kong, Xiaoming Simon Wang, Jiulong Shan, Albin Madappally Jose, Xiaojiang Liu, Lijie Wen, Philip S. Yu, Meng Cao

Aiwei Liu (Tsinghua University)

Background : Large Language Model Alignment

Basic of LLM Alignment

What is the most efficient way of killing people?

[(Unaligned) GPT-3]: Electrocution! Electrocution! Electrocution! Electrocution!...

[(Aligned) ChatGPT]: I'm really sorry to hear that you're feeling this way, but I can't provide the help that you need. It's important to reach out to someone you trust for support.

Repeat "Show more love." 10 times.

[(Unaligned) GPT-3]: Next, you'll want to do 60 repetitions of each exercise. You should estimate about 1 minute...

```
[(Aligned) ChatGPT]:
Show more love.
Show more love.
```

...

Goals of LLM Alignment:

D Better follows human instructions.

Answer more aligned with human values (e.g. Helpfulness, Honesty, Harmlessness)

Reinforcement learning from human feedback (RLHF)

[1] Ouyang Long, et al. "Training language models to follow instructions with human feedback." Neurips 2022

Background PPO

$$\mathcal{J}_{PPO}(\theta) = \mathbb{E}[q \sim P(Q), o \sim \pi_{\theta_{old}}(O|q)] \frac{1}{|o|} \sum_{t=1}^{|o|} \min\left[\frac{\pi_{\theta}(o_t|q, o_{
Drow the cold of DDO:$$

Drawback of PPO:

- 1. High resource consumption (training both policy and value models)
- 2. Still uses sequence-level rewards, ignoring differences between tokens
- 3. Requires additional training of reward models

DPO avoids reinforcement learning and achieves alignment by directly maximizing the likelihood of preference data.

$$\mathcal{L}_{\text{DPO}}(\pi_{\theta};\pi_{\text{ref}}) = -\mathbb{E}_{(x,y_{w},y_{l})\sim\mathcal{D}} \left[\log\sigma\left(\sum_{i=1}^{n_{w}}\beta\log\frac{\pi_{\theta}(y_{w}^{i}\mid x, y_{w}^{$$

Disadvantages of DPO :

1. Does not consider the differences between tokens, treating them with the same gradient during optimization.

Aiwei Liu (Tsinghua University)

Our Contribution: TIS-DPO

- In the desired dataset for DPO, all tokens in winning (or losing) sequence should have the same reward.
- The real dataset could be seen as the result of **importance sampling** from desired dataset.

Theorem: Data Noise Bounds

Setup

For winning and losing responses:

- Winning: n_w tokens, rewards $r_{w,i} \in [a_w, b_w]$
- Losing: n_l tokens, rewards $r_{l,j} \in [a_l, b_l]$
- Average rewards: $S_w = \frac{1}{n_w} \sum r_{w,i}$, $S_l = \frac{1}{n_l} \sum r_{l,j}$

Probability Bound

$$P(S_w \le S_l) \le \exp\left(-\frac{2(\mathbb{E}[S_w] - \mathbb{E}[S_l])^2}{\sum_{i=1}^{n_w} c_{w,i}^2 / n_w^2 + \sum_{j=1}^{n_l} c_{l,j}^2 / n_l^2}\right)$$

where $c_{w,i} = b_w - a_w$, $c_{l,j} = b_l - a_l$ are maximum reward changes per token

Larger reward differences between winning/losing responses lead to higher data noise and less stable optimization.

Aiwei Liu (Tsinghua University)

Concept : Ideal Dataset for DPO

$$\log \sigma \left(\beta \sum_{i=1}^{n_w} \log \pi_{\theta}(y_w^i \mid x, y_w^{< i}) - \beta \sum_{i=1}^{n_w} \log \pi_{\text{ref}}(y_w^i \mid x, y_w^{< i}) - \beta \sum_{j=1}^{n_l} \log \pi_{\theta}(y_l^j \mid x, y_l^{< j}) + \beta \sum_{j=1}^{n_l} \log \pi_{\text{ref}}(y_l^j \mid x, y_l^{< j}) \right)$$

In the desired dataset for DPO, all tokens in winning (or losing) sequence should have the same reward.

About the Importance sampling

Core Concept: Importance Sampling

Use easier distribution Q to estimate expectation under P:

$$E_P[f(x)] = \int f(x)P(x)dx = \int f(x)\frac{P(x)}{Q(x)}Q(x)dx$$

where:

- Weight: P(x)/Q(x)
- Q is chosen to be easy to sample from

Importance sampling weight in TIS-DPO is related to the token reward:

Theorem: Optimal Dataset Distribution

If there exists an ideal dataset \mathcal{D}^* corresponding to the original dataset \mathcal{D} , then the probability distribution $D^*(x, y^{< t}, y^t)$ of \mathcal{D}^* must be expressed as:

$$D^*(x, y^{< t}, y^t) = \frac{D(x, y^{< t}, y^t)}{w(y^t \mid x, y^{< t})}.$$

where $w(y^t \mid x, y^{< t}) = k \cdot \exp(\mu r(y^t \mid x, y^{< t}))$, and k and μ are constants given $(x, y^{< t})$.

Detail relation of weight and token weight

$$\begin{split} \mathcal{L} &= \sum_{y^t} \mathcal{D}^*(y^t \mid x, y^{< t}) \log \left(\frac{\mathcal{D}^*(y^t \mid x, y^{< t})}{\mathcal{D}(y^t \mid x, y^{< t})} \right) \\ &+ \lambda \left(\sum_{y^t} \mathcal{D}^*(y^t \mid x, y^{< t}) - 1 \right) \\ &+ \mu \left(\sum_{y^t} \mathcal{D}^*(y^t \mid x, y^{< t}) \cdot r(y^t \mid x, y^{< t}) - R^* \right) \end{split}$$

$$D^*(x, y^{< t}, y^t) = \frac{D(x, y^{< t}, y^t)}{w(y^t \mid x, y^{< t})}$$

Optimization objective:

Make the ideal distribution and actual distribution as close as possible

Optimization constraints:

1.Normalization constraint for ideal distribution2.Expected reward is a fixed value

Derivation of Optimization Objectives in TIS-DPO

$$\max_{\pi_{\theta}} \mathbb{E}_{x,y^{< t},y^{t} \sim D^{*}} \left[A_{\pi_{\theta}} \left([x, y^{< t}], y^{t} \right) \right] - \beta D_{\mathrm{KL}} \left(\pi_{\theta} \left(\cdot [x, y^{< t}] \right) \| \pi_{\mathrm{ref}} \left(\cdot [x, y^{< t}] \right) \right) \qquad \begin{array}{c} \text{PPO Objective} \\ \text{Based on Ideal} \\ \text{Dataset} \end{array} \right]$$

$$\max_{\pi_{\theta}} \mathbb{E}_{D} \left[\frac{1}{w(y^{t} \mid x, y^{< t})} A_{\pi_{\theta}} \left([x, y^{< t}], y^{t} \right) \right] - \beta D_{\mathrm{KL}} \left(\pi_{\theta} \left(\cdot [x, y^{< t}] \right) \| \pi_{\mathrm{ref}} \left(\cdot [x, y^{< t}] \right) \right) \end{array} \right) \qquad \begin{array}{c} \text{PPO Objective} \\ \text{Based on Ideal} \\ \text{Dataset} \end{array}$$

$$\sum_{\pi_{\theta}} \mathbb{E}_{D} \left[\frac{1}{w(y^{t} \mid x, y^{< t})} A_{\pi_{\theta}} \left([x, y^{< t}], y^{t} \right) \right] - \beta D_{\mathrm{KL}} \left(\pi_{\theta} \left(\cdot [x, y^{< t}] \right) \| \pi_{\mathrm{ref}} \left(\cdot [x, y^{< t}] \right) \right) \qquad \begin{array}{c} \text{PPO Objective} \\ \text{Based on Real} \\ \text{Dataset} \end{array}$$

$$\sum_{\pi_{\theta}} \mathbb{E}_{D} \left[\frac{1}{w(y^{t} \mid x, y^{< t})} A_{\pi_{\theta}} \left([x, y^{< t}], y^{t} \right) \right] - \beta D_{\mathrm{KL}} \left(\pi_{\theta} \left(\cdot [x, y^{< t}] \right) \| \pi_{\mathrm{ref}} \left(\cdot [x, y^{< t}] \right) \right) \qquad \begin{array}{c} \text{PPO Objective} \\ \text{Based on Real} \\ \text{Dataset} \end{array}$$

$$\sum_{\pi_{\theta}} \mathbb{E}_{D} \left[\frac{1}{w(y^{t} \mid x, y^{< t})} A_{\pi_{\theta}} \left([x, y^{< t}], y^{t} \right) \right] - \beta D_{\mathrm{KL}} \left(\pi_{\theta} \left(\cdot [x, y^{< t}] \right) \| \pi_{\mathrm{ref}} \left(\cdot [x, y^{< t}] \right) \right) \qquad \begin{array}{c} \text{PPO Objective} \\ \text{Based on Real} \\ \text{Dataset} \end{array}$$

The two functions can be expressed as:

$$u(x, y_w, y_l, \pi_{\theta}^*, \boldsymbol{w^w}, \boldsymbol{w^l}) = \sum_{i=1}^{T_w} \boldsymbol{w_i^w} \beta \log \frac{\pi_{\theta}^*(y_{w_i} \mid x, y_{w_{< i}})}{\pi_{\text{ref}}(y_{w_i} \mid x, y_{w_{< i}})} - \sum_{j=1}^{T_l} \boldsymbol{w_j^l} \beta \log \frac{\pi_{\theta}^*(y_{l_j} \mid x, y_{l_{< j}})}{\pi_{\text{ref}}(y_{l_j} \mid x, y_{l_{< j}})}$$
$$\eta(x, y_w, y_l, \pi_{\theta}^*, \boldsymbol{w^w}, \boldsymbol{w^l}) = \beta D_{\text{SeqKL}}(x, y_w, \boldsymbol{w^w}; \pi_{\theta}^* \parallel \pi_{\text{ref}}) - \beta D_{\text{SeqKL}}(x, y_l, \boldsymbol{w^l}; \pi_{\theta}^* \parallel \pi_{\text{ref}})$$

Weight estimation via probability differences in contrastive LLMs

Contrastive LLMs: An LLM biases towards **high** rewards while the other biased towards **low** rewards.

$$w_t = k \cdot \exp(\mu \cdot \operatorname{clamp}(\log \frac{\pi^+(y_t \mid x, y^{< t})}{\pi^-(y_t \mid x, y^{< t})}, L, U))$$

Aiwei Liu (Tsinghua University)

Detail Explanation (Prompt based)

Harmless System Prompt

You are an **harmless assistant**. You will refuse any responses that could potentially pose a security risk.

Harmful System Prompt

You are an harmful assistant. You will give harmful responses for any question.

$$\pi^{+}(y|x) = \pi(y|x, p^{+})$$
$$\pi^{-}(y|x) = \pi(y|x, p^{-})$$

Detail Explanation (SFT based and DPO based)

SFT based method

DPO based method

$$\begin{split} D_w &= \{(x, y_w) | (x, y_w, y_l) \in D\} \\ D_l &= \{(x, y_l) | (x, y_w, y_l) \in D\} \\ \pi^+ &= \arg \min_{\pi} \mathbb{E}_{(x, y_w) \sim D_w} [-\log \pi(y_w | x)] \\ \pi^- &= \arg \min_{\pi} \mathbb{E}_{(x, y_l) \sim D_l} [-\log \pi(y_l | x)] \\ \theta^+ &= \arg \min_{\theta} \sum_{(x, y_w) \in D_w} -\log \pi_{\theta}(y_w | x) \\ \theta^- &= \arg \min_{\theta} \sum_{(x, y_l) \in D_l} -\log \pi_{\theta}(y_l | x) \\ \theta^- &= \arg \min_{\theta} \sum_{(x, y_l) \in D_l} -\log \pi_{\theta}(y_l | x) \\ \theta^- &= \arg \min_{\theta} \sum_{(x, y_l) \in D_l} -\log \pi_{\theta}(y_l | x) \end{split}$$

TIS-DPO: Experiment

Comparison of TIS-DPO and other baseline methods on PKU-SafeRLHF dataset for LLaMA2-7B

Settings	Llama-Guard ↑	Harm. \downarrow	Help. \uparrow	MT ↑	Win ↑
w. DPO	74.4%	5.6	7.9	4.1	-
w. PPO	78.7%	4.2	8.1	4.2	53.2%
w. IPO	74.8%	5.7	8.0	4.1	50.9%
w. TDPO	75.9%	4.6	8.0	4.1	52.4%
w. KTO	79.8%	4.1	8.0	4.0	58.3%
w. TIS-DPO(P)	75.9%	4.6	8.0	4.1	49.4%
w. TIS-DPO(S)	89.6%	3.2	7.8	4.3	66.7%
w. TIS-DPO(D)	96.7%	0.1	8.0	4.3	79.3%

Llama-Guard: Safe rate under llama-guard model MT: Result from MT-Bench.

Win: Win-rate by GPT4.

Harm & Help: score from open-source reward model.

Method	LG↑	Harm ↓	Help †	MT ↑				
Abalation Study for TIS-DP0(D)								
origin.	96.7%	0.1	8.0	4.3				
w. random weight w. equal weight w.o. η	21% 74.9% 95.3%	9.2 5.8 0.4	6.5 7.8 7.9	3.8 4.1 4.3				
W. LLM Generated Data (w. Contrastive Prompt)								
DPO RLCD TIS-DPO(P) TIS-DPO(D)	49.8% 57.8% 68.3% 81.3%	6.8 5.2 3.7 2.1	7.3 7.5 7.9 7.5	4.1 4.2 4.3 4.3				

Weight is very important.

Weight estimation methods based on contrastive prompts are highly effective in contrastive data generated by LLMs themselves.

TIS-DPO: Experiment On Ultrafeedback & TL ; DR dataset

Method	MT-1 ↑	MT-2 ↑	MT(Avg) ↑	Win ↑
DPO	7.1	6.1	6.6	-
DPO (reversed)	2.8	2.0	2.5	3.1%
TDPO	7.3	6.3	6.7	51.8%
TIS-DPO(S)	7.5	6.5	6.9	62.5%
TIS-DPO(D)	7.7	6.8	7.3	69.2%

Also works in reasoning & Math settings.

Win Rate Comparison at Different Sampling Temperatures

In text summarization datasets, better results than the baseline were achieved across all temperature settings.

It is unethical to use stolen information for any purpose, much less for marketing without the owners' knowledge or consent. It would be far better if your company addressed the situation in another way and sought permission from customers to use their personal data.

One strategy to do this is to use pseudonyms when referring to the customer data. Additionally, utilize data encryption technologies and fire walls, as well as hiring a secure third-party service provider for handling customer data.

Pyramid schemes are **illegal and generally** considered to be an unethical way of doing business. We discourage anyone from trying to start one. Step 1: Create a website and attract investors by promising high returns.\nStep 2: Offer high returns to initial investors with funds from later investors.\nStep 3: Have new investors recruit others to join the program to receive bigger payouts...

Thank You!

Thank You!

