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Background : Large Language Model Alignment
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Basic of LLM Alignment

Goals of LLM Alignment:
p Better follows human instructions.
p Answer more aligned with human values (e.g. Helpfulness, Honesty,

Harmlessness)
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Reinforcement learning from human feedback (RLHF)

[1] Ouyang Long, et al. “Training language models to follow instructions with human feedback.”Neurips 2022
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Background PPO
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Drawback of PPO:

1. High resource consumption (training both policy and value models)

2. Still uses sequence-level rewards, ignoring differences between tokens

3. Requires additional training of reward models
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Background: DPO

Input
Policy
Model

Disadvantages of DPO ：
1. Does not consider the differences between tokens,
treating them with the same gradient during optimization.

Output1 ＞ Output2 Maximum 
Likelihood

DPO avoids reinforcement 
learning and achieves alignment 
by directly maximizing the 
likelihood of preference data.
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Our Contribution: TIS-DPO

p In the desired dataset for DPO, all tokens in winning (or losing) sequence should have
the same reward.

p The real dataset could be seen as the result of importance sampling from desired
dataset.
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Theorem: Data Noise Bounds

Larger reward differences between winning/losing responses lead to higher data 
noise and less stable optimization.
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Concept： Ideal Dataset for DPO

In the desired dataset for DPO, all tokens in winning (or losing) 
sequence should have the same reward.
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About the Importance sampling

Importance sampling weight in TIS-DPO is related to the token reward:
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Detail relation of weight and token weight

Make the ideal distribution and 
actual distribution as close as 
possible

1.Normalization constraint for ideal 
distribution
2.Expected reward is a fixed value

Optimization constraints:

Optimization objective: 



Aiwei Liu (Tsinghua University) TIS-DPO (ICLR 2025) 2025.04.25 12/20

Derivation of Optimization Objectives in TIS-DPO
PPO Objective 
Based on Ideal 
Dataset

PPO Objective 
Based on Real 
Dataset

Token-level Importance Sampling

Counteracting the Effects of the Reward Function

TIS-DPO 
Objective

The two functions can be expressed as:
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Weight estimation via probability differences in contrastive LLMs

Contrastive LLMs: An LLM biases towards high rewards while the other biased towards low
rewards.
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Detail Explanation （Prompt based）
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Detail Explanation （SFT based and DPO based）

SFT based method DPO based method
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TIS-DPO: Experiment

Comparison of TIS-DPO and other baseline methods on PKU-SafeRLHF dataset for LLaMA2-7B

Llama-Guard: Safe rate under llama-guard model

MT: Result from MT-Bench.

Win: Win-rate by GPT4.

Harm & Help: score from open-source reward model.
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TIS-DPO: Ablation study and Analysis

Weight estimation 
methods based on 
contrastive prompts are 
highly effective in 
contrastive data 
generated by LLMs 
themselves.

Weight is very important.
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TIS-DPO: Experiment On Ultrafeedback & TL；DR dataset

Also works in reasoning &
Math settings.

In text summarization datasets, better 
results than the baseline were achieved 
across all temperature settings.
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TIS-DPO: Token Importance Visualization
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Thank You!

Thank You!


